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ROBUST REGRESSION USING REPEATED MEDIANS

by

Andrew F. Siegel
Princeton University

ABSTRACT

The repeated median algorithm is a robustified U-statistic

in which nested medians replace the single mean. Unlike many

generalizations of the univariate median, repeated median esti-

mates maintain the high 50% breakdown value and can resist the

effects of outliers even when they comprise nearly half of the

data. Because they are calculated directly, not Iteratively,

repeated median procedures can be used as starting values for

iterative robust estimation methods. For bivariate linear regres-

sion with symmetric errors, repeated median estimates are unbiased

and Fisher consistent, and their efficiency under Gaussian sampling

can be comparable to the efficiency of the univariate median.

Key Words: Breakdown Value, U-Statistic, Resistance.
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1. INTRODUCTION

Robust regression procedures based on medians have been con-

sidered by Thiel(1950),Mood(1950, p.406), Brown and Mood(1951),

Sen(1968), Maritz(1979), and others. Such high-breakdown proce-

dures are of interest for several reasons. First, some applied

problems, including the editing of data, require maximal protec-

tion against the presence of outliers. Siegel and Benson (1980)

provide an example of this need in the comparison of shapes.

Secondly, many of the more efficient robust procedures, including

M-estimates (Huber, 1973) are iterative and require directly

computable resistant starting values (Andrews, 1974) to guard

against convergence to a non-robust local optimum near the least-

squares solution. Finally, the extreme case of high-breakdoWn

estimates should be well understood.

The repeated median algorithm is defined in Section 2 as a

modified U-statistic in which nested medians are used instead of

a single mean, and their computational complexity is found. The

breakdown value is shown in Section 3 to be 50%. the best possible

for unbounded invariant estimators and an improvement upon pre-

viously considered median procedures. Under suitable conditions,

repeated median estimates are unbiased and Fisher consistent, as

shown in Section 4, and their efficiency under Gaussian sampling

can be comparable to the efficiency of the univartate median.

L1
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2. THE REPEATED MEDIAN ALGORITHM

We first consider the bivariate linear case of fitting a
robust line Y=A+BX to the data (Xi,Y i ) , i=l,...,n with

distinct X. Define the pairwise slope B(iJ)-(Yj-Yi)/(Xj-Xi)

of the line from point i to point J . These n(n-l)/2 slope

estimates will be condensed into a single number using two stages

of medians. The repeated median estimate of slope is

A = Median (Median
i joi B(i j) } (2.1)

The inner median is the median slope of the lines that pass

through point I We can visualize (2.1) as the median of the

column medians (or row medians, by symmetry) of the B(ij) matrix,

ignoring entries along the main diagonal. This is not an Iterative

method; if we calculate (2.1) using the residuals R-Yi-BXi  in

place of Yi . we obtain zero by additive invariance *of the median.

The y-intercept A can be estimated in two ways. If we use

the value B Just estimated, a single median will suffice for

this hierarchical approach:

A('), Median (  Xi) (2.2)

Otherwise, A can be estimated directly using a double median

as in (2.1) to obtain

A (2) . Median (Median A(ij)} (2.3)
I
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where A(i,j) - (Xj Y i -XiYj)(XJX) is the y-intercept of the

line connecting points i and j . Less time is required for

computing the hierarchical estimate (2.2), but direct estimation

(as in 2.3) is invariant to the ordering of the parameters A

and B.

The general repeated median algorithm is like a U-statistic

(Hoeffding, 1948), except that nested medians replace the over-

all mean. We therefore obtain a general procedure for estimating

a real parameter e whenever there is a positive integer k such

that every subset of k data points determines a value of e;

say points numbered il,...,ik determine 0(1l,...,ik) The

mean of these estimates, if we have n data points in all, is

the U-statistic.

(nt 1"'". i (2.4)

S(10 1 <' .."0<kn)

* Using a median in place of the mean, we can robustify this some-

what to

Median
(l0il<...<ik<n){e(il...,9k) 1 (2.5)

which includes the case of regression estimates considered by

,' Thtel(1950) and Sen(1968).

Repeated median estimates use a succession of k partial

medians. Begin by reducing the number of indices from k to

4 k-l
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e(il,...,kl , .) - Median e(i,...h ik) (2.6)

This process can be repeated, and with each median an index is

deleted. Finally, the repeated median estimate is

A Median ( iayni [edia~nI"' (72 ('"" 1",k ' ik1 0

(2.7)

For example, in the multiple regression model

Y - A + B1XI + B2X2  (2.8)

81 would be estimated using a triple median

1 Median Median Median (29)

where BS(ij,k) is the B, coefficient of the plane (2.8) deter-

mined by points ij, and k. Colinearity problems can be handled

by considering only those triples that actually determine a value

for 8

When more than one parameter is to be estimated, they can be

estimated hierarchically using information on previously estimated

parameters at each stage or directly using (2.7) for each para-

meter. These two approaches were illustrated in (2.2) and (2.3),

and the same considerations apply in general.

'7)
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The computational complexity of (2.7) is O(n because

the total number of medians of n-I or fewer numbers that must

be performed is
k I (n-j ] O(nk-i (2.10)

and an O(n) algorithm is available for calculating the median

(Knuth, Vol. III, 1973, Section 5.3.3, p. 216).

"l

I
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3. BREAKDOWN VALUE

Breakdown value is a measure of the ability of an estimator

to resist the effects of outliers (Hodges, 1967, and Hampel, 1971).

It is, roughly speaking, the largest fraction of the data that

can be arbitrarily changed while the estimator is guaranteed to

remain bounded. The arithmetic mean has a breakdown value of 0%,

while the univariate median achieves nearly 50% because [(n-1)/21

out of n points can be changed while the median remains bounded

(brackets indicate the greatest integer function). This value,

50%, is the highest possible for invariant unbounded estimators.

Median-based regression methods do not necessarily preserve

the highest possible 50% breakdown value of the univariate median.

For example, least absolute error regression (Bassett and Koenker,

1978) has a breakdown value of zero (0%); the figure shows an

example in which the least absolute error regression line can be

controlled by changing only the height of a single point.

The Mood-Brown procedure for bivariate linear regression

(Mood, 1950; and Brown and Mood, 1951) requires that the median

residual be zero for both halves (low X and high X) of the data.

Because half of the data in either group can control the estimated

line, the breakdown value is 25%. The breakdown value of Andrews'
,#

median-based regression method is also at most 25% (Andrews, 1974,

Section 5).



-7-

Y*

I-.; x

FIGURE 1. The height of a single influential point can
i lXcontrol the least absolute error regression line.
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The overall median procedure (2.5), studied by Thiel(1950)

and Sen(1968) for bivariate linear regression, has a breakdown

value of 29%. In higher dimensions, with subsets of k points

at a time, the breakdown value is 1 -2
"(l/k) This is found by

setting the ratio of the number of unchanged to total estimates

6(l,...,ik) equal to 1/2, the breakdown value for the median.

When the primitive estimates e(il,...,i k  are themselves

robust, the resulting breakdown value can be higher.

The repeated median procedure has an asymptotic breakdown

value of 50% (as n-- with k fixed) because each nested median

in (2.7) involves n or fewer terms (the overall, nonrepeated

median (2.5) involves n k terms at once in a single median).

This is shown in the following theorem which finds the exact

breakdown value in small samples:

Theorem. The repeated median estimate (2.7) will remain

bounded whenever more than (n+k-l)/2 points are held fixed while

the remaining points are arbitrarily moved, provided each subset

of k of the fixed points determines a value e(il,...,ik).

This theorem is a consequence of a more general lemma.

Lemma. Consider a class of functions e (i1,. .,ik) where

1<ijn are integers and different values of can be thought

of as different data configurations. Suppose AC{l,...,n} has

* more than (n+k-l)/2 elements and e(i l,.., 1k ) are bounded

(as a varies) whenever il,...,ikeA Then the repeated median

values e calculated from (2.7) are also bounded.
b4J
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Proof. We proceed by induction on k . When k=l , this

reduces to the breakdown bound of the univariate median. Now

assume the hypotheses of the lemma. Performing the innermost

median (2.6) in (2.7) we see that

0M . ' edian }0 19(i i
e c(il' ' k-l' = Mik{l,. ik l I 'L k)

are bounded whenever iI,...,i k-lA because the median has n-k

terms, of which more than half are bounded. Note that for each

, the k-fold repeated median of 8O(il,...,i k )  is identical to

the (k-l)-fold repeated median of 8 (il,...,ikl, ) These

are seen to be bounded by using the induction hypothesis. ]

I
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Proof. We proceed by induction on k When k=l , this

reduces to the breakdown bound of the univariate median. Now

assume the hypotheses of the lemma. Performing the innermost

median (2.6) in (2.7) we see that

aMl. .i . edian B (i )

l ' k-i' = k{in,..,k-l 1  1 '" k

are bounded whenever i I,...$i k-lIA because the median has n-k

terms, of which more than half are bounded. Note that for each

a , the k-fold repeated median of e6(il...,i k )  is identical to

the (k-1)-fold repeated median of 6a(il,...,Ii , ,°). These

are seen to be bounded by using the induction hypothesis. [

"*1
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4. UNBIASEDNESS. FISHER CONSISTENCY, AND EFFICIENCY

The repeated median estimates are unbiased in the bivariate

linear model

Yi A + BXi + € i  , izl,..., n (4.1)

D
with fixed Xi and symmetric errors for which (€1,..., £n)

(-l, ...,0 -n) . The slope estimate B from (2.1) is symmetrically

distributed about the true slope B because

Median [ Median

L ji X Xi

=-(B-B) (4.2)

K Repeated median estimates are Fisher consistent for bivariate

distributions in which Y given X is symmetrically distributed
D

about a center that is linear in X , so that (X, Y - A - BX)

(X, -(Y-A-BX)). Fisher consistency requires that when we evaluate

the estimator at the actual population distribution (not at.a

sample), we obtain the population parameter (Cox and Hinkley,

-4 
- -
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1974, p. 287). The repeated median procedure (2.7) extends to

allow us to estimate the slope B given a distribution (X, Y).'F

Assume the X marginal is continuous and define

B = Median L Median Y-Y((XY),,F X' '(4.3)
1 (X Y' )-uF x 'x

This is algebraically equivalent to

B-B = Median rMedian (Y'-A-BX')-(Y-A-BXB 8 = (X ,Y ) F I (X ,,y ,) F  x -X

=_ Fedian M~edian [-(Y'-A-BX'I]-[-(Y-A-BX)]
- (X, Y)-,F I (X' ,Y' )o-F X'-X

*-(B-B) (4.4)

where the last equality follows by symmetry. Because these are

fixed, not random, variables, (4.4) must be zero and we have
A A

B-B . Similarly, it can be shown that A-A regardless of whether

A is found using a single or double median.

The efficiency of repeated median regression, in the presence

of Gaussian errors, is not far from the efficiency of the uni-

variate median, as shown in the table for evenly spaced and for

Gaussian X values. Efficiency here is the ratio of the vari-

ances of the least squares and median-based estimates. For the

univarlate median, this ratio is assymptotically 2/ - .64

(Cramer, 1946, p. 369).

Efficiencies for repeated median regression were estimated

using Monte Carlo computer simulation techniques. For each table
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entry, 10,000 replications were performed in order to achieve an

estimated standard error of the efficiency smaller than .01.

Simulations were done on Princeton University's IBM 3033 Computer

using the IMSL subroutine ggnpm for pseudorandom Gaussian deviates.

Three X designs were chosen: evenly spaced, even Gaussian

percentiles (0 1((i-h)/n), i-1, ..., n where 0 denotes the

standard Gaussian cumulative distribution function) and random

Gaussian deviates chosen independently for each replication.

I
Si

4 _
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TABLE 1.

Efficiency of repeated median regression
bivariate slope estimation

with
independent Gaussian errors,
by Monte Carlo simulation

X design
Gaussian

n evenly spaced even percentiles random

10 .69 .64 .53

20 .73 .65 .61
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